Linear conic optimization for nonlinear optimal control
نویسندگان
چکیده
Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the original optimal control problem and its linear conic formulations are developed. As illustrated by a couple of simple examples, these results are relevant in the context of finitedimensional semidefinite programming relaxations used to approximate numerically the solutions of the infinite-dimensional linear conic problems.
منابع مشابه
Linear Conic Optimization for Inverse Optimal Control
We address the inverse problem of Lagrangian identification based on trajectories in the context of nonlinear optimal control. We propose a general formulation of the inverse problem based on occupation measures and complementarity in linear programming. The use of occupation measures in this context offers several advantages from the theoretical, numerical and statistical points of view. We pr...
متن کاملیک الگوریتم کارا برای زیر مسالهی ناحیه اطمینان توسیع یافته با دو قید خطی
Trust region subproblem (TRS), which is the problem of minimizing a quadratic function over a ball, plays a key role in solving unconstrained nonlinear optimization problems. Though TRS is not necessarily convex, there are efficient algorithms to solve it, particularly in large scale. Recently, extensions of TRS with extra linear constraints have received attention of several researchers. It ha...
متن کاملForthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...
متن کاملA General Robust-Optimization Formulation for Nonlinear Programming
Most research in robust optimization has so far been focused on inequality-only, convex conic programming with simple linear models for uncertain parameters. Many practical optimization problems, however, are nonlinear and non-convex. Even in linear programming, coefficients may still be nonlinear functions of uncertain parameters. In this paper, we propose robust formulations (see (1) versus (...
متن کاملConic Fitting Using the Geometric Distance
We consider the problem of fitting a conic to a set of 2D points. It is commonly agreed that minimizing geometrical error, i.e. the sum of squared distances between the points and the conic, is better than using an algebraic error measure. However, most existing methods rely on algebraic error measures. This is usually motivated by the fact that pointto-conic distances are difficult to compute ...
متن کامل